
ACM Collegiate Programming Contest 2015
(Hong Kong)

CO-ORGANIZERS:

Venue: The Hong Kong Polytechnic University

Time: 2015-06-13 [Sat] 1400—1800

Number of Questions: 7

ACM-HK PC 2015 Page 2 of 16

(This is a blank page.)

ACM-HK PC 2015 Page 3 of 16

Problem A. SORTING TEXT, SORTING NUMBERS

Input: Standard Input

Output: Standard Output
Time Limit: 30 seconds
Memory Limit: 64 Megabytes

In this problem you will be given a series of lists that contain both words and integers. You have to

write a program to sort each of the lists, in such a way that all words are in alphabetical order and

all integers are in numerical order. Furthermore, if the 𝑛th element in the list is a number it must

remain a number; if it is a word it must remain a word.

INPUT

Each line of the input contains a list of words and integers. Each element of the list is separated by

a comma followed by a space. Every list ends with a period. The input will be terminated by a line

storing a single period.

There are at most 100 lists and each list contains at most 100,000 elements.

OUTPUT

For each list in the input, output the sorted list in a line. The elements should be separated by a

comma followed by a space. Each list should end with a period.

EXAMPLE
Standard Input Standard Output

0.

banana, Apple, Orange.

Banana, apPle, oraNGe.

10, 8, 6, 4, 2, 0.

x, 30, -20, z, 1000, 1, Y.

50, 7, kitten, puppy, 2, bird.

.

0.

Apple, banana, Orange.

apPle, Banana, oraNGe.

0, 2, 4, 6, 8, 10.

x, -20, 1, Y, 30, 1000, z.

2, 7, bird, kitten, 50, puppy.

ACM-HK PC 2015 Page 4 of 16

(This is a blank page.)

ACM-HK PC 2015 Page 5 of 16

Problem B. N-CREDIBLE MAZES

Input: Standard Input

Output: Standard Output
Time Limit: 30 seconds
Memory Limit: 64 Megabytes

An n-tersection is defined as a location in an 𝑛-dimensional space, 𝑛 being a positive integer,

having all non-negative integer coordinates. For example, the location (1, 2, 3) represents an n-

tersection in a three-dimensional space. Two n-tersection are said to be adjacent if they have the

same number of dimensions and their coordinates differ by exactly 1 in a single dimension only.

For example, (1, 2, 3) is adjacent to (0, 2, 3), (2, 2, 3) and (1, 2, 4), but not to (2, 3, 3) nor (3, 2, 3) nor

(1, 2). An n-teresting space is defined as a collection of paths between adjacent n-tersections.

Finally, an n-credible maze is defined as an n-teresting space combined with two specific n-

tersections in that space, one of which is identified as the starting n-tersection and the other as the

ending n-tersection.

INPUT

The input file will consist of the descriptions of one or more n-credible mazes. The first line of the

description of a maze will specify 𝑛, the dimension of the n-teresting space (0 ≤ 𝑛 ≤ 10). All

coordinate values will be less than 10. The next line will contain 2𝑛 non-negative integers. The

first 𝑛 of which describe the starting n-tersection, and the next 𝑛 of which describe the ending n-

tersection. Next will be a non-negative number of lines containing 2𝑛 non-negative integers each,

identifying paths between adjacent n-tersections in the n-teresting space. The list is terminated by

a line containing only the value −1. Several such maze descriptions may be present in the file. The

end of input is signaled by a space dimension of zero.

OUTPUT

For each maze output its position in the input; e.g., the first maze is “Maze #1”, the second is “Maze

#2”, etc. If it is possible to travel through the n-credible maze’s n-teresting space from the starting

n-tersection to the ending n-tersection, also output “can be travelled” on the same line. If such

travel is not possible, output “cannot be travelled” instead.

ACM-HK PC 2015 Page 6 of 16

EXAMPLE
Standard Input Standard Output

2

0 0 2 2

0 0 0 1

0 1 0 2

0 2 1 2

1 2 2 2

-1

3

1 1 1 1 2 3

1 1 2 1 1 3

1 1 3 1 2 3

1 1 1 1 1 0

1 1 0 1 0 0

1 0 0 0 0 0

-1

0

Maze #1 can be travelled

Maze #2 cannot be travelled

ACM-HK PC 2015 Page 7 of 16

Problem C. FRAME STACKING

Input: Standard Input

Output: Standard Output
Time Limit: 10 seconds
Memory Limit: 64 Megabytes

Consider the following 5 frames in a 9 × 8 array:

........CCC....

EEEEEE..BBBB.. .C.C....

E....E.. DDDDDD..B..B.. .C.C....

E....E.. D....D..B..B.. .CCC....

E....E.. D....D..AAAA ..B..B..

E....E.. D....D..A..A ..BBBB..

E....E.. DDDDDD..A..A

E....E..AAAA

EEEEEE..

 1 2 3 4 5

If we stack them together, starting with 1 at the bottom and ending with 5 at the top, then from the

top, we will see some frames cover some other frames. Viewing the stack of 5 given frames

resembles the following picture.

.CCC....

ECBCBB..

DCBCDB..

DCCC.B..

D.B.ABAA

D.BBBB.A

DDDDAD.A

E...AAAA

EEEEEE..

Your program should read a picture of such stacked frames and determine the order in which the

frames are stacked from bottom to top. In this example, your program should output “EDABC”.

Here are some additional rules about the frame stacking:

1. The width of the frame is always exactly 1 character, and the sides are never shorter than 3

characters.

2. It is possible to see at least one part of each of the four sides of a frame. A corner shows two

sides.

ACM-HK PC 2015 Page 8 of 16

3. The frames will be lettered with capital letters, and no two frames will be assigned the same

letter.

INPUT

The input contains a number of input blocks. Each input block contains the height ℎ (ℎ ≤ 30) in the

first line and the width 𝑤 (𝑤 ≤ 30) in the second line. A picture of the stacked frames is then given

as ℎ strings with 𝑤 characters each. An input block with height 0 indicates the end of input.

OUTPUT

For each input block your program should output the solution to standard output. Each line of the

solution contains the stacking order of the frames, from bottom to top. If there are multiple

possibilities for an ordering, list all such possibilities in alphabetical order, one possibility a line.

You can assume the inputs are correct and there will always be at least one legal ordering for each

input block. List the output for all blocks in the input sequentially, without any blank lines.

EXAMPLE
Standard Input Standard Output

9

8

.CCC....

ECBCBB..

DCBCDB..

DCCC.B..

D.B.ABAA

D.BBBB.A

DDDDAD.A

E...AAAA

EEEEEE..

3

6

AAABBB

A.AB.B

AAABBB

0

EDABC

AB

BA

ACM-HK PC 2015 Page 9 of 16

Problem D. OCTAL FRACTIONS

Input: Standard Input

Output: Standard Output
Time Limit: 10 seconds
Memory Limit: 64 Megabytes

Fractions in octal (base 8) notation can be expressed exactly in decimal notation. For example, 0.75

in octal is 0.963125 (7/8 + 5/64) in decimal. All octal numbers of 𝑛 digits to the right of the octal

point can be expressed in no more than 3𝑛 decimal digits to the right of the decimal point.

Your task is to write a program to convert octal numerals between 0 and 1, inclusive, into

equivalent decimal numerals.

INPUT

The first line of the input indicates the number (≤ 100) of octal numerals to be converted, and each

subsequent line stores one octal numeral. Each octal numeral may have up to 100,000 digits after

the octal point.

OUTPUT

Your program should output each conversion in the following format:

𝑑0. 𝑑1𝑑2𝑑3 … 𝑑𝑘 [8] = 𝐷0. 𝐷1𝐷2𝐷3 … 𝐷𝑚 [10]

where the left side is the input (in octal), and the right hand side is the decimal equivalent. There

must be no trailing zeros on both sides, i.e., 𝑑𝑘 and 𝐷𝑚 must not be zero.

EXAMPLE
Standard Input Standard Output

3

0.75

0.0001

0.1

0.75 [8] = 0.953125 [10]

0.0001 [8] = 0.000244140625 [10]

0.1 [8] = 0.125 [10]

ACM-HK PC 2015 Page 10 of 16

(This is a blank page.)

ACM-HK PC 2015 Page 11 of 16

Problem E. SAY A PASSWORD

Input: Standard Input

Output: Standard Output
Time Limit: 5 seconds
Memory Limit: 64 Megabytes

Password security is a tricky thing. Users prefer simple passwords that are easy to remember (like

“hello”), but such passwords are often insecure. Some sites use random computer-generated

passwords (like “xcwpcdg”), but users have a hard time remembering them. One postential

solution is to generate “pronounceable” passwords that are relatively secure but still easy to

remember.

Your program will verify if a password generated by a generator is acceptable or not. To be

acceptable, a password must satisfy the following 3 rules:

1. It must contain at least one vowel.

2. It cannot contain three consecutive vowels or three consecutive consonants.

3. It cannot contain two consecutive occurrences of the same letter, except for “ee” or “oo”.

(For the purposes of this problem, the vowels are “a”, “e”, “i”, “o” and “u”; all other letters are

consonants.)

INPUT

The input consists of one or more potential passwords, one per line, followed by a line containing

only the word “end” that signals the end of the file. Each password is at least one and at most

twenty letters long and consists of lower case letters.

OUTPUT

For each password, output whether or not it is acceptable, using the precise format shown in the

example.

EXAMPLE
Standard Input Standard Output

a

tv

ptoui

bontres

zoggax

wiinq

eep

houctuh

end

<a> is acceptable.

<tv> is not acceptable.

<ptoui> is not acceptable.

<bontres> is not acceptable.

<zoggax> is not acceptable.

<wiinq> is not acceptable.

<eep> is acceptable.

<houctuh> is acceptable.

ACM-HK PC 2015 Page 12 of 16

(This is a blank page.)

ACM-HK PC 2015 Page 13 of 16

Problem F. HEX MINER

Input: Standard Input

Output: Standard Output
Time Limit: 30 seconds
Memory Limit: 64 Megabytes

In 2115, a space explorer has arrived a planet beyond Pluto called Nibiru, or Planet X. The surface

of Nibiru is covered by hexagonal rock columns, i.e. hexagonal tiling, with the side equal to 1. The

rock column contains one of three elements A, B and C found in the planet and arranged in way that

no two adjacent columns will contain the same element (Figure 1). The amount of a particular

element contain in a column is affected by the location of "hotspots" of the corresponding element,

which is also a rock column. The hotspots actually are the source of elements which under the rock

column and therefore, the content of corresponding element is relative high. For the column

containing the same element outside the hotspot, its content will be dropped by 10 units on each

ring away from the hotspot (Figure 2). The ring is formed by the minimum columns that can

enclose the hotspot or the inner ring. The actual content of a column can be obtained by adding the

amount provided by all the corresponding hotspots around plus a base amount, which is 10, i.e. in

the absence of hotspots, a column will contain 10 units of its element.

A C

BC

B

C B

A

A

B

Figure 1

A, 80

CB

A, 80

CB

A
 Hotspot(100)

CB

A, 80

CB

A, 80

CB

A, 70

CB

A, 80

A, 80

C

A, 60

CB

A, 70

CB B

A

CB

CBA

CBA, 70

CBA

C

A, 70

C

A B A

B

B

A

C

CB B

C

A

C

A

C

C

A

Figure 2

The purpose of the explorer is to collect these three elements to synthesize a compound call Bia,

which is the fuel of the explorer. Since the chemical formula of Bia is A3B2C7, i.e. 3 units of A, 2 units

of B and 7 units of C are needed to synthesize Bia, the explorer is expected to collect these three

elements in this proportion so that the maximum amount of Bia can be made. The explorer can

only sent out one mining robot to the center of a rock column and extend its arms to two adjacent

cells to collect the elements, i.e. only three cells will be mined and each of them should contain

different elements and connected.

ACM-HK PC 2015 Page 14 of 16

Before send out the robot, the explorer will use its radiation sensor to find out the hotspots around

the center column, where the explorer is currently parked above. The explorer uses 3 elements

coordinate system to index the column (figure 3). The distribution of the columns and the elements

are same as the one in figure 2 with A located at (0, 0, 0) and B located at (-1, 0, 1).

0, 0, 0

+x

1, 1, 0

+y

+z

0, 1, 1-1, 0, 1

-1, -1, 0

0, -1, -1 1, 0, -1
-y

-x

-z

2, 2, 0

0, 2, 2

 Figure 3

Your task is to find out the landing position of the robot where the maximum amount of Bia can be

made and close to the explorer location (0, 0, 0). You may assume the robot can only land on the

column with element A only and the maximum number of hotspot is 100.

INPUT

The input contains a number of input blocks. For each block, the first input is an integer N

(𝑁 ≤ 100) that indicates the numbers of hotspots detected, followed by N records. Each record

contains four integers and one character. The first three integers are the x, y and z index of the

column, followed by the content of the element. The last character is the element type of the

hotspot. The value of x, y, z could be in the range of −30,000 to 30,000. The input ends with a block

with −1 number of hotspots.

OUTPUT

For each input block, your program should output the location of column that the robot will be

landed. In case more than one column are suitable for landing, list the locations in ascending order.

EXAMPLE
Standard Input Standard Output

1

0 0 0 100 A

3

-1 1 2 25 A

2 1 -1 25 A

-1 0 1 30 B

0 0 0

-1 1 2

ACM-HK PC 2015 Page 15 of 16

Problem G. THE FUTURE KEYBOARD

Input: Standard Input

Output: Standard Output
Time Limit: 5 seconds
Memory Limit: 64 Megabytes

Imagine that you are living in the year of 2215. After 200 years of excessive consumption, the

resources on earth become scarce. To reduce materials used, keyboards are made to have only five

keys arranged from left to right. The keyboard user would press multiple keys simultaneously to

input one of the 26 letters in the English alphabet and the space character.

Let’s use 0 to represent a key not being pressed and 1 to represent a key being pressed. The user

will use the keyboard pattern 00001 to input the first character A, 00010 to input the second

character B, 00011 to input the third character C, … and 11010 (decimal value 26) to input Z. The

user also uses keyboard pattern 11011 (decimal value 27) to input the space character. Imagine

that in 2215, people don’t use other punctuations or distinguish upper and lower case characters.

Your task is to write a program to recognize the user input on the future keyboard. Assume that the

time sequence is divided into discrete moments numbered 1, 2, 3, 4, and so on. User input will only

be read at those discrete moments.

INPUT

The input contains a number of input blocks. Each input block is consist of 5 lines. A line contains

pairs of numbers as follows.

a1,b1,a2,b2,...

The above pattern means that the respective key is pressed at moment a1, released at moment b1,

pressed again at a2, released again at b2, and so on. The 5 lines of program input begin from the

least significant digit (key) and progress to the most significant digit (key). In the first sample input

block below, the least significant key was pressed at moment 2, released at moment 3, pressed at

moment 5 and released at moment 9. (If a key has never been pressed, the corresponding line will

be blank.)

OUTPUT

Your program should output one line of decoded message for each input block.

ACM-HK PC 2015 Page 16 of 16

EXAMPLE
Standard Input Standard Output

2,3,5,9

5,10

1,6,7,9,10,12

3,7,8,9,10,11

6,8,9,10

2,3,5,7,10,12

5,7,10,12

1,6,10,12,13,15

3,7,11,12,13,14

6,7,10,13

hello world

hello world

Note that the second input block in the sample is different from the first sample and yet it produces

the same output of “hello world”. It is because the user did not press any key at moments 7, 8 and 9

as he or she was thinking about how to spell the word “world”. No symbol will be generated in the

output when no key was pressed at one of the discrete moments.

You can assume that only correct key combination will be pressed. In other words, the user will not

input the key pattern of 11100 (decimal value 28) because it is not a character supported by the

future keyboard.

— End of Problem Set —

